A form of asymmetric PCR that uses primer pairs deliberately designed for use at unequal concentrations (Pierce, 2003; Sanchez, 2004). Unlike typical asymmetric PCR, LATE-PCR, amplification is efficient due to improved primer design (Pierce, 2005). LATE-PCR begins with an exponential phase in which amplification efficiency is similar to that of symmetric PCR. Once the limiting primer is depleted, the reaction abruptly switches to linear amplification, and the single-stranded product is made for many additional thermal cycles. LATE-PCR consistently generates strong signals because the absence of product strand reannealing permits unhindered hybridization of the molecular beacon to its target strand and continued accumulation of that strand beyond the cycle at which symmetric reactions typically plateau. By eliminating the exponential phase, LATE-PCR generates less error scatter among replicates. When used in conjunction with molecular beacons, LATE-PCR results in increased signal intensity and reduced sample variation. These features are particularly useful for real-time PCR initiated with single cells. LATE-PCR has been used to directly amplify ssDNA for pyrosequencing (Salk, 2006). See also Bonetta, 2005.